Along with pointing out the
differences between Tiny
BASIC and standard BASIC,
Tom offers here some com-
ments and opinfons on
BASIC and structured pro-
gramming. Interestingly, his
manuscript is one of the few
we’'ve received which was pre-
pared using a text editor (a
Model! 37 TTY driven by a
COSMAC 1802 microproces
sor). It would seem that more
of wus (including myself]
should be at this stage by
now. — John.

Tom Pittman
PO Box 23189
San Jose CA 95153

f you have an Altair or

IMSAIl computer or any
8080-based system, you have
your choice of several ver-
sions of BASIC. There are
rumors of BASIC for 6800
and 6502 within the next few
months, But these require
memory — probably more
than you have with your low
budget machine.

The alternative is Tiny
BASIC. The language is a
stripped down version of

regular BASIC, with integer
variables only — no strings, no
arrays, and a limited set of
statement types. It was first
proposed by Bob Albrecht,
the ‘‘dragon” of Peoples
Computer Company (PCC) in
Menlo Park, as a language for
teaching programming to
children. The PCC newspaper
ran a series of articles (largely
written by Dennis Allison)
entitled “‘Build Your Own
BASIC,” suggesting how Tiny
BASIC might be implemented
in a microprocessor. The
important portions of these
articles have been reprinted in
Dr. Dobb's Journal of Com-
puter Calisthenics and Ortho-
dontia, published by PCC and
available in most computer
stores.

34

Tiny Basic

..« @ mini-language

BASIC

Before we get into Tiny
BASIC, let us look at high
level languages in general and
BASIC in particular.

When you program in ma-
chine language, each com-
mand, or statement, repre-
sents one operation from the
machine’s point of view.
When we think of a single
concept like, "’ A is the sum of
B and C,”” a machine language
program to perform this oper-
ation may take several opera-
tions, such as:

DA B
LDA c
STO A

A high level language, on
the other hand, lets you put a
single human idea into a
single program statement, for
instance:

LETA=B+C

BASIC is one of a class of
"algebraic’’ languages in that
it permits the representation
of algebraic formulae as part

for your micro

of the language. Other lan-
guages in this class are
FORTRAN and ALGOL.
COBOL does not generally
fall in this class {except for
the "super” versions).

Of critical importance to
all algebraic languages is the
concept of an expression. An
expression is the program-
ming language notation for
what we might think of as
“’the right-hand side of a for-
mula.”" Alternatively, we can
think of an expression as “a
way of expressing the value
of some number which the
computer is to compute.’”

An expression may consist
of a single number, a single
variable name (all variables
are referred to by name in
high level languages), a single
function call ({discussed in
detail later), or some combin-
ation of these, separated by
operators and possibly
grouped by parentheses. For
this discussion, when we refer

to an operator, we mean one
of the four functions found
on a cheap pocket calculator:
addition symbolized by " + ”;
subtraction by “* - **; multipli-
cation by " *" (we do not
use "X’ because that would
be confused with the name of
the wvariable “X”); and
division by ‘' /. (The usual
symbol for division does not
appear on most typewriter

and computer keyboards.)
Thus, A-B
c-D

becomes, in computerese,
“-B)/(€-D
Here the parentheses are used
to indicate priority of opera-
tions. Normally multiplica-
tion and division are per-
formed first, then addition
and subtraction. Without the
parentheses the expression,
Al
c-D
would be understood by the
high level language as,

i %»-u

which is not the same at all.

In BASIC, when an expres-
sion is encountered, it is
evaluated. That is, the values
of the variables are fetched,
the numbers are converted (if
necessary), the functions are
called, and the operations are
perfermed. The evaluation of
an expression always results
in a number which is defined
to be the value of that expres-
sion.

The first example which
we discussed showed a simple
BASIC statement,

LET AsB+(O
This is called an assignment
statement, because it assigns
the value of the expression
"B + C" to the variable A. All
algebraic high level languages
have some form of assign-
ment statement. They are
characterized by the fact that
when the computer processes
an assignment statement, a
single named variable is given
a new value. The new value
may not necessarily be

Photo courtesy of Electranic Product Associates, Inc., 1157 Vega Street, San Diega CA 92110

different from the old; for
example:

This is also a valid assignment
statement, even though
nothing changes. Assignment
statements are alsc used to
put initial values into var
iables, for instance:

LET F=3

Control Structures

One of the important char
acteristics distinguishing
different high level languages
is the control structure
afforded to the programmer.
The control structure is deter-
mined by the various per-
mitted control statements,
which alter the flow of pro-
gram execution. Normally
program execution advances
from statement to statement
in sequence, although there
are however, circumstances in
which this sequence s
altered. The most common
control structure allows one
set of operations to be per-

formed if a certain condition
is true, and another, if it is
false. In "structured program-
ming” this is referred to as
the “IF ... THEN... ELSE"
construct; its general form is
“IF condition is true, THEN
do something, ELSE do some
other thing.” The full gener-
ality of this control structure
is not directly available in
BASIC, but, as we shall see,
this is only a minor incon-
venience.

Standard BASIC uses the
IF ... THEN construct, and
makes it work something like
a conditional GOTO:

If the value of the variable A
is greater than three, then
(GOTO) line 120, otherwise
continue with the next state-
ment in sequence. Actually,
the condition to be tested
consists of a comparison
between two expressions,
using any of the comparison
operators which are given in
Fig. 1.

In each case, if the compar-
ison of the two expressions
evaluates as true, the implied
GOTO is taken; otherwise the
next statement in sequence is
executed. In Tiny BASIC the
syntax is slightly different.
Instead of a statement num-
ber, a whole statement
follows the THEN part of the
IF ... THEN. The compar-
ison above, in Tiny BASIC,
would be:

IF A>3 THE

But we could also validly

write:

F A<=3 THEN LET A=A+10

or some such. Note that this
is mnot wvalid in standard
BASIC.

The GOTO construct has
been the subject of contro-
versy in the last few vears. A
strong case has been made for
""GOTO-less programming’’
which uses only certain other
control structures to achieve
structured programs which
are more readable and less

35

= Equality {the comparison is true
if the two expressions are equal)

> Greater than

< Less than

< = Less or Equal (not Greater)
P Greater or Equal

o Not Equal

Fig. 1. Comparison Operators.

prone to errors. | believe that
both good and incomprehen-
sible programs are possible
regardless of the control
structures used or not used,
but | seem to be in a minority
at this time. Suffice to say
that BASIC is not conducive
to structured programming in
the technical sense of the
term.

Standard BASIC has one
control structure which has
been omitted from Tiny
BASIC. This is the FOR . ..
NEXT loop. Normally, .if a
program requires some Se-
quence to be performed
thirteen times, the following
program steps might be used:

20
30 NEXT I

Statement 20 would be exe-
cuted 13 times, with the
variable | containing succes-
sively the values, 1, 2, 3 ...
12, 13. In Tiny BASIC the
same operation is a little
more verbose:

10 LET I=1

20° .,

30 LET I=I=]

40 IF T¢=13 THEN GOTD 20

but, as you can see, nothing is
lost in program capability.

Data Structures

Standard BASIC also has
some data structures which
have not been carried over
into Tiny BASIC. The only
data structure in Tiny BASIC
is the integer number, which
is further limited to 16 binary
bits for a value in the range of
-32768 to +32767. Compare
this precision with the six

36

digit precision in standard
BASIC, which also gives you

fractional numbers (some-
times called ‘'floating
point’’). Regular BASIC

allows arrays, or variables
with multiple values distin-
guished by "subscripts,” and
strings, which are variables
with text information for
values instead of numbers. We
will see presently how these
deficiencies in Tiny BASIC
can be overcome.

Input/Qutput

Thus far we have said
nothing about input and out-
put, how to see the answers
the computer has calculated,
or how to put in starting
values. These needs are
accommodated in BASIC by
the PRINT and INPUT state-
ments. Numbers are printed
{in decimal, for us humans to
read) at the user terminal by
the PRINT staterment:

PRINT A, B + C

This prints two numbers; the
first is the value of the var-
iable A, and the second is the
value of the expression B+C.
In general, the PRINT state
ment evaluates and prints

expressions. It is perfectly
valid to write
PRINT 1, 123, 0-0

although we know in advance
what will be displayed on the
terminal. To make our output
more readable, BASIC per-
mits the program to print out
text labels on the data.
PRINT "THE SUM OF 1 + 2 IS", 3 + 2
will display the line:
THE SUM OF 1 + 2 IS 5

To feed new numbers

from the terminal to the pro-

gram the INPUT statement is
used.
INPUT A, B, C

will request three numbers
from the input keyboard. The
more popular versions of
Tiny BASIC have an extra
capability here beyond stan-
dard BASIC, in that the oper-
ator can type in numbers and
whole expressions. Thus, if in
response to the INPUT re-
quest above, the operator
types
142, 3%(4+5), B-A

the variable A will receive the
value 3, B will receive the
value 27, and C will receive
the value 24 = 27-3. There-
fore, a program in Tiny
BASIC, which permits no
text strings, can display and
accept as input limited text
information:

10 LET Y=l

20 LET N=0

30 PRINT “PLEASE ANSWER Y OR N";
40 INPUT A

50 IF A=Y THEN GOTQ 100

60 IF A=N THEN GOTO 120

70 GOTO 30

This little program asks for an
answer, which should be
either the letter "Y' or the
letter “N” (or their equiva-
lents, the numbers 1 or O,
respectively). If the operator
types anything else, the re-
quest is repeated. Obviously,
this technique will not work
for something like a person’s
name where any letters of the
alphabet in any seguence
must be expected, but it is
certainly an improvement
over no alphabetic input at
all.

A generalized text output
capability in Tiny BASIC
depends on another charac-
teristic peculiar to Tiny
BASIC and not shared by
standard. That is the fact that
the line number in a GOTO
or GOSUB statement is not
limited to numbers only, but
may itself be any valid ex-
pression which evaluates to a
line number. The program
which is shown in Fig. 2
prints A, B, or C, depending
on whether the variable N has
the value 1, 2, or 3. Note
that, if N is out of range,
nothing is printed.

The USR Function
What about the fact that

there are no arrays? Let us
turn to the USR function for
a way to store and retrieve
blocks of data. The remarks
which follow apply only to
my version of Tiny BASIC

and are unigque in that
respect.
The USR function is in-

voked with one, two, or three
arguments {expressions
separated by commas within
the parentheses). The first {or
only) argument is evaluated
to the binary address of a
machine language subroutine
somewhere in the computer
memory. The USR function
does a machine language sub-
routine call (JSR instruction)
to that address, The user is
obliged to be sure that there
is in fact a subroutine at that
address. If there is not, Tiny
BASIC (and thus your com-
puter) will execute whatever
is there. The second and third
arguments, if present, will be
loaded into the CPU registers
before jumping to this sub-
routine. On exit, any answer
the subroutine produces may
be left in the CPU accumula-
tor, and it becomes the value
of the function. Two machine
language routines are already
provided with the BASIC
Interpreter; if S is the address
of the beginning of the inter-
preter,
USR(S + 20, M)

has as its value the byte
stored in memory at the
address in the variable M
{that is, the contents of the
second argument is evaluated
to a memory address). Also,
USR{S + 24, M, B)

stores the low order 8 bits of
the value of B into the
memory location addressed
by M. The return value of this
function is meaningless.

Consider the standard
BASIC program in Fig. 3(a)
to input ten numbers and
print the largest as compared
to the Tiny BASIC program
in Fig. 3{b).

| have used this example
for two reasons: First, it
shows how the USR function
may be used to simulate the
operation of arrays. Second,
it is typical of many of the
applications commonly ad-

10 IF N»0 THEN
20 RETURN

30 PRINT "A™
35 RETURN
40 PRINT
45 RETU
50 PRIN
55 RETU

IF Ne¢4 THEN GOSUB 204(N * 10)

Bitty Computers Tiny BASIC
User's Manual. This comes
with a hex paper tape of the
program and is available for
$5 from: Itty Bitty Com-
puters, PO Box 23189, San
Jose CA 95153.

There are different ver-
sions for each of the follow-

to argue for arrays; however,
neither real nor simulated
arrays are required for this
program! Here is the same
program, with no arrays:

10 LET I=1
20 LET L=0
30 INPUT V
40 1F L<V THEN LET L~V
50 LET T=I+1
60 IF I<=10 THEN GOTO 30

90 PRINT L ing systems, so be sure to
specify which system you are
Summary running:

M6800 with MIKBUG,
EXBUG, or home brew (Exe-
cutes in 0100-08FF); AMI
Proto board (Executes in
EOOO-E7FF); SPHERE
{Executes in 0200-09FF);
6502 with KIM, TIM or
homebrew (Executes in

Tiny BASIC is not a super
language. But, it also does not
require a super computer to
run. l've given here only a
cursory examination of the
power of Tiny BASIC. A full
description of Tiny BASIC
may be found in the Itty

Fig. 3. Programs to input ten numbers and print the largest.
(a) Standard BASIC, (b) Tiny BASIC.

Fig. 2. Program to Print A,
B, or C, depending on the
value of .

0200-0AFF); JOLT (Exe
cutes in 1000-18FF); APPLE
{Executes in 0300-0BFF);
KIM-2 4K RAM (executes in
2000-28FF).

Although few people have
paper tape systems, we are
unable to provide the pro-
gram on audio cassette. But if
you request it, we will supply
a hexadecimal listing of the
program instead of tape
which you can key in and
then can save on cassette for
future use.

If you have a small 8080

domain. Most of them have
been published in Dr. Dobb's
Journal, which is $10 per
year from: People’s Com-
puter Company, PO Box 310,
Menlo Park CA 94025. This
journal has also published a
number of games which run
in Tiny BASIC.

One final comment. Tiny
BASIC was originally con-
ceived as “‘free software” by
the people at PCC. The 6800
and 6502 versions described
in this article are not free;
they are proprietary and
copyrighted. Software is my
only source of income, and, if
| cannot make it from pro-
grams like Tiny BASIC, |
won’t write them. Please
respect the labor of those of
us who are trying to make

system, there are several quality software available to
widely differing versions of vyou: pay for the programs
Tiny BASIC in the public youuse ®
TQ 10
1)
10
l_) THEN 80

(1}

Rainbow Computing, Inc.

{formerly Rainbow Enterprises)
10723 White Oak Avenue
Granada Hills, CA 91344
(213) 360-2171
*The compuler store
featuring software support.”
Customized Hardware —
Software Packages
Program Conversions &
Original Programming

Expert Consulling, Tutoring
& Research Services

Authorized Distributor
for WAVE MATE

Microcomputer Systems

cess s ne s

4 common connections per backplane
pad MINIMIZES/ELIMINATES
connection wiring 1/16 FR4-tinned.
BB -3 $15.50 ea. $140/doz.
A.F.STAHLER CO.

P.O. BOX 354

&)

{408) 252-4219

CUPERTINO CA 95014

inter-

seessranersannse

m

37

